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Two-dimensional lattice-gas models with attractive interactions and particle- 
conserving happing dynamics under the influence of a very large external elec- 
tric field along a principal axis are studied in the case of a critical density. A 
finite-size scaling analysis allows the evaluation of critical indexes for the infinite 
system as fl = 0.230_+ 0.003, v = 0.55 _+ 0.2, and c~ ~ 0. We also describe some 
qualitative features of the system evolution and the existence of certain 
anisotropic order even well above the critical temperature in the case of finite 
lattices. 

KEY WORDS:  Stochastic lattice-gas model; stationary nonequitibrium 
states; fast ionic conductors; nonequilibrium critical behavior. 

1. I N T R O D U C T I O N  

The lattice-gas version of the Ising model with particle-conserving hopping 
dynamics under the influence of an external electric field can be used to 
model the so-called fast ionic or superionic conductors4; in addition, this 
model is convenient for the analysis of many interesting general properties 
of stationary nonequilibrium states, such as the occurrence of instabilities 
and "phase transitions," for which there is no statistical mechanics 
formalism comparable to the equilibrium Gibbs ensemble theory. 

The latter difficulty is partially reflected, for instance, in the fact that, 
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excluding the exact solution under certain limiting conditions, (2"3/ the 
rigorous results for that model are confined to rather general properties, (4) 
while most details have only emerged recently via computer 
simulations. (4-7) These have shown in particular that, in the case of a two- 
dimensional periodic lattice with attractive interactions between the par- 
ticles (the case where the computer data are most reliable at present), a 
very strong uniform electric field E along one of the principal axes 
produces striplike configurations in the direction of E below some tem- 
perature T~*, this being larger than the Onsager critical temperature 
Tc~2.2692 J/kB, which characterizes the corresponding equilibrium 
situation (i.e., E = 0 ) .  They also revealed that the anisotropic phase 
segregation has a critical point (at T* with a half-filled lattice) and, 
apparently, a new (nonequilibrium) universality class in two dimensions 
differing from both the Onsager-Ising class and the Landau classical one 
(Ref. 6; henceforth referred to as I). As a matter of fact, previous results for 
a fluid under shear model (8) and parallel studies concerning reaction- 
diffusion Ising models (9'1~ and continuous versions of the model of interest 
here (1~--131 seem to confirm that the nonequilibrium critical behavior may 
be more varied than the equilibrium one. 

Those studies also made it evident that the interesting field of non- 
equilibrium critical behavior needs further consideration. In particular, the 
nonclassical critical behavior reported in I for the two-dimensional fast 
ionic conductor model needs to be confirmed, given that (nonequilibrium) 
classical behavior is found more generally. (2'3'8'12'~3) This motivated the 
present study in two-dimensions (and a similar study just started in three 
dimensions, where previous, very limited Monte Carlo data (7~ suggested 
nonclassical behavior also). 

We report in this paper on an extensive finite-size scaling analysis of 
the two-dimensional fast ionic conductor model near the corresponding 
critical point. Essentially, we confirm the qualitative results in I. We also 
describe various correlation functions, and evaluate the critical exponents 
/~, v, and, to some extent, ~. In a companion paper (III) we study the first- 
order phase transitions occurring for off-critical densities, evaluate 
coexistence and spinodal lines, and make some comparisons with related 
experimental observations. 

2. S O M E  D E T A I L S  OF T H E  M O D E L ,  
C O M P U T A T I O N S ,  A N D  E V O L U T I O N  

The model of interest here is the basic one considered previously in I. 
It consists of a square lattice L x L with periodic boundary conditions 
whose sites can be either occupied by a particle to be intepreted as a 
positive ion, a situation represented by setting the occupation variable at 
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that site ni= 1, or empty, ni=0,  i=  l, 2,..., N = L  2. A given initial con- 
figuration no = {hi} with density p = N -1 52ni= 1/2 evolves according to a 
stochastic hopping dynamics with conserved p, i.e., ions hop to nearest 
neighbor (n.n.) empty sites according to the transition probabilities per 
unit time 

p = min{ 1, exp[ - (~H+ E)/kB T] } (2.1) 

Here 6H represents the change in the configurational system energy, 

H({ni})=--4J E rlirlj, J>O (2.2) 
n.n. pairs 

produced by the jump, and E stands for a very large uniform external elec- 
tric field along one of the principal directions of the lattice; namely, we set 
E/kBT= +_ 15 for jumps in the directions +2, respectively, corresponding 
in practice to having an "infinite" electric field in the + 2  direction such 
that no jumps occur in the - 2  direction, and E =  0 for jumps in the per- 
pendicular directions _+Z The transition probabilities (2.1), which satisfy 
detailed balance locally, (4/ can be viewed as a generalization of the usual 
Metropolis dynamics when E r 0. One may also think of other dynamics as 
well, but it seems that the most interesting features of the corresponding 
nonequilibrium phase transition in this case are already contained in the 
present version of the model. (6'7/ As a matter of fact, they are mainly 
associated with the existence of the (inkfinite) external electric field E sup- 
pressing the jumps in the - 2  direction, thus producing, as a consequence 
of the periodic boundary conditions, a simple (nonequilibrium) steady state 
characterized by an ion current in the field direction. Notice that the 
system also interacts, stochastically, with a heat reservoir at temperature T, 
which serves in particular to maintain the steady state absorbing the heat 
generated by the current. 

The highly anisotropic phase segregation induced by the field E below 
some critical temperature Tff (see Fig. 1 for typical configurations during 
the stationary nonequilibrium states) can be investigated by considering 
the order parameter 

2 m =  [<M~)r- <M~>r] ~/= 
2 = L _ ,  [ _~ ]2 (2.3) 

E L E 
y(x) x(y) 

where <-)T denotes the "canonical" ensemble average at temperature T 
produced by (2.1); this measures the density difference between fluid 
(striplike) and vapor (isotropic) phases. 

The present computations refer to lattices L = 10, 15, 30, 50, and 100; 
they also involve some "confidence" runs for L =  300 and much larger 
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statistics when L = 50 than in I. The initial configurations n o for L ~< 30 are 
always random, as if the system was quenched to the temperature T in the 
selected transition probability, Eq. (2.1), from an "infinite" temperature 
(i.e., random) initial state�9 Below some apparent criticl temperature T*(L), 
the system then evolves monotonically (smooth variations of m) toward 
one-strip stationary states, which are reached in practice in a relatively 
short time measured in Monte Carlo (MC) steps, i.e., number of attempted 
jumps divided by N. The data for L = 50, on the other hand, were obtained 
by extending the runs reported previously in I. Most of the runs in this case 
showed two-strip intermediate states, suddenly decaying into one-strip 
states after rather large evolutions (cf. Fig. 1 in I); Fig. 2a presents a typical 
evolution of the order parameter in those cases, revealing that the mean 
values characterizing each situation are within the fluctuations of the other. 

I ~ �9 

i~!i~!iiiiiiii!i~iiiiiiiiiiiiii~i~!~!iiiiiii~iiiiii~iiii!~ii~iii!ii!iiiiiiiiiiiii~iiiiiiiiiiii 
ii~ii~i~!ii~i~ii~iiiii~i~i~ii~iiiiii~;i~ii~!~ii~!!ii!ii{iiiiiii[iii~i~iii~!~i~i~i~ 

(a) 

Fig. 1. Some typical configurations of the system with p =0.5  under an infinite uniform 
external electric field along the horizontal direction. In order to emphasize the interphase 
shape and the clustering, the particles (ions) surrounded by other particles at all the n.n. 
positions are represented by crosses, while the pluses represent particles having at least a n.n. 
hole. (a) A typical configuration during the final steady state for L =  100 and T=0 .8Tc .  (b) 
Same for T =  1.2T~. (c) Same for T =  1.3T c, still below the critical temperature T* in the 
presence of the field. (d) Same for T =  1.45Tc, above T*. (e) Intermediate multistrip states for 
L =  100 and T =  1.1To after 6000 MC steps in the case of a quench from infinite temperature; 
this never decayed into a one-strip state during our evolutions�9 (f) Same as in (e), but for 
L =  300. 
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i~2ii~;;:i~;~i~i~!i!~iiii~ii!ii;~iiiii~iiii~iiiii~;!i!i~!;ii)iii~!~i~;::i~ii)ii~ 

(b) 
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(c) 

Fig. 1 (continued) 
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( d )  

~::.::,::~:;;:~?,?!~:~;:~!:~!~:~:~:::~?:~:~?:::~!~i~;..~:~!~! I 

(e) 

F i g .  1 (continued) 
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Fig. 1 (continued) 

The system was never seen to escape from those "metastable" states (which 
essentially differ from the metastable states to be reported in III when 
p < 1/2) during a few of our runs at low temperatures, and we had to 
manipulate some system configurations for L = 50 to create artificial one- 
strip states in those cases. 

It seems that the nature of the intermediate multistrip states strongly 
depends on system size. On the one hand, the number of strips clearly 
increases with L, as shown by Figs. le and lf, collecting two typical 
configurations which were never seen to decay. On the other hand, the 
corresponding time of excape probably diverges as L ~ Go; in fact, we were 
unable to observe the decay toward one-strip states during very large 
evolutions in the case of systems with L >~ 100 quenched from infinite tem- 
perature. Thus, in order to obtain the reported information concerning 
stationary one-strip states, we usually started the evolutions for L t> 100 by 
heating up a (zero-temperature) configuration in which all the particles 
were in a single, compact symmetric strip. We never observed during these 
processes a one-strip state to split into several strips; a typical evolution is 
depicted in Fig. 2b. 

As a general fact, it is also noticeable that the present Monte Carlo 
computation required one order-of-magnitude more statistics, in order to 
obtain good Gaussians for most of the variables of interest, then ordinary 

822/49/1-2-7 



96 Vall~s and Marro 

1,00 

m 

O, 95 

0.90 

0 .85  

1.00 

tv,,,,yv viv 

(a) 
I (MCS) 

0.75 

0.50 

0=25 0 
i i 

50000 100000 

( b )  

150000 
t (MCS) 

Fig. 2. (a) Time evolution of the order parameter in a typical run for L = 50 and T =  0.8T~.. 
The initial part of the evolution (around 35,000 MC steps) corresponds to a two-strip state, 
which finally decays into the real, stationary one-strip state. The straight lines represent the 
corresponding mean values, m =0.913 and 0.936, respectively. (b) Same for L =  100 and 
T =  1.3To, near T~*(L), in the case of a system heated from zero temperature. 
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MC computations for the Ising model (E=0) .  Actually, the duration of 
our runs extended from 105 to 3 • l06 MC steps, each mean value being an 
average of more than 2000 (practically uncorrelated) measurements. 

3. DESCRIPTION OF D A T A  

The anisotropy observed during the phase segregation of the system 
compels one in principle to consider separately the values of most relevant 
quantities along the two principal directions of the lattice, the direction 
of the field and the perpendicular direction 9. 

The configurational system energy per lattice site as defined in 
Eq. (2.2), 

u(73 = ( H> T/(--JN) = ux + uy (3.1) 

can be related to the number of particle-hole bonds (to be represented by 
e = e x + ey) via the equations 

u = 2 - 2 e ,  

As the temperature is increased, 
should expect ex~ey ,  and Ux, Uy, 

Ux(y~ = 1 -- 2ex~y) (3.2) 

T ~  ~ (random configuration), one 
and u ~ 0. This is indeed suggested by 

Fig. 3, collecting our data for xx(T) and uy(T)  as a function of L. The data 
also reveal that finite-size effects are very small for T >  T*, the latter inter- 
preted as the temperature for which there is a (sudden) change in the 
corresponding second derivative for large enough lattices, while they are 
very important for T < T,*. The latter dependence is approximately linear 
with L - l  when L ~> 15, both for ux and uy, a behavior which essentially 
differs from the one in the equilibrium case with periodic boundary 
conditions. On the contrary, that and other finite-size effects in our model 
closely resemble, at least approximately, the situation found in the 
equilibrium case with free edges, (14) probably as one should expect after 
some simple thought. Thus, the data in Fig. 3 easily allow us to obtain the 
extrapolated values of the energy for L ~ oo (Fig. 4) when making plots of 
ux(.v) versus L 1. 

Most important to our purposes here is the average current in the 
direction of the field j x (T) ,  defined as the number of actual jumps per site 
performed in the direction ~ per unit time. This, however, is simply related 
to ux(T). Let us consider for a moment the generalized version of the 
model studied in I, where the jumps in the direction of the field are 
attempted with a frequency F times larger than the perpendicular jumps; in 
a d-dimensional space, the fraction of attempted moves in the direction + 4  
is f ~ ( F ) =  F / 2 ( F +  d - 1  ), and it follows for the infinite field that 

jx(T) = ex(T) f~(F) (3.3) 
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Fig. 3. (a) The  conf igura t ional  energy u x parallel  to the field as a funct ion of t empera tu re  for 
different lattice sites: L = ( A ) 10, ( O ) 15, (*) 30, ( �9 ) 50, and  ( [] ) 100. (b) Same for u.~.. 
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The configurational energies ( [ ] )u /2 ,  (.)ux, and y(O )uy for the infinite lattice as 
extrapolated from the data in Fig. 3; cf. Eq. (3.1). 

or Jx(T) = ex( T)/4 and Jx(~ ) = 1/8 in the present case (F = 1 ). Figure 4 in I 
reports some independent data for jx(T) in the case of finite lattices; we 
shall specifically refer to the behavior of jx(T) for the infinite system when 
making comparisons with experimental results in Section 5 of paper III. 

The behavior of the order parameter for the nonequilibrium phase 
transition, re(T) as defined in Eq. (2.3), is shown in Fig. 5 as a function of 
L. One observes here strong finite-size effects both above and below T~* 
and, in particular, that the situation resembles again the equilibrium case 
with free edges. More precisely, one has approximately, excluding the 
smaller values of L, that m behaves linearly with L -  ~ for T < T~* and with 
L n, n ~ - 0 . 2 ,  for T >  To*; this is confirmed later, where n is given a 
physical meaning. 

The simple phenomenological dependence on L shown by m(T) also 
allows, as in the case of u(T), the computation of the order parameter for 
the infinite system, say m*(T). The extrapolated values for m*(T) can then 
be used to obtain estimations for the corresponding critical exponent/~ and 
temperature T~* (to be confirmed later by the finite-size scaling analysis). 
The most reliable way of doing so here is probably by making plots of 
(rn*) 1/~ versus T for different trial values of/~, looking for straihgt lines. 
[This procedure is indeed more sensitive than the usual log m* versus 
l og ( 1 -  T/Tc*) plot, and it involves no a priori assumption about T~* 
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Fig. 5. The  order  p a r a m e t e r  as defined in Eq. (2.3) as (a)  a funct ion of T/T~ for different 

sizes (same symbols  as in Fig. 3), and  (b) as a funct ion of L - l  for different temperatures .  



S t o c h a s t i c  Lattice Systems 101 

(except, of course, or drawing of the dashed lines in Fig. 5b, which is well- 
founded based on the previous experience about L dependences (14) and on 
the behavior of our "confidence" runs for L = 300; see below); it should 
also be noticed that making m *lm versus T plots in some related familiar 
situations, such as with the Onsager solution for the two-dimensional Ising 
model and the corresponding mean-field solution, only yields straight lines 
over rather wide temperature ranges, namely from 0.7To to Tc in the 
Onsager case and from 0.8To to T~ in the mean-field case, when using the 
respective correct values for /3.] Such plots definitely show that neither 
/~= 1/8 nor /3= 1/2 can produce the expected linear behaviors for m*I/~; 
instead, the best straight line extending over the expected temperature 
range is found (Fig. 6) for 

/~ = 0.230 _+ 0.003 (3.4a) 

That line then intersects the horizontal axis at 

T,* = (1.355 _. 0.003)T C (3.4b) 

which is quite consistent with the situation depicted by Fig. 4 and with the 
rest of the data for the infinite lattice. Those values, which are also 

1 m 
1/13 

~ 1 / 2  

0 ] , I , I ^ " ~ . , . ~ \  I , 

o . s  1 1.2 I1 .4  

T 
Fig. 6. The data for the order parameter  m* corresponding to the infinite lattice, as obtained 
by extrapolating to L --* oo the data  in Fig. 5, plotted for different hypotheses for/~. The case 
/~ = 0.23 produces the best straight line over the expected temperature range and extrapolates 
to a value of T*  consistent with the rest of the data. 
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consistent with the one reported in I for the case L = 5 0 ,  namely 
fl = 0.23 _+ 0.02 and T* -- 1.33 __ 0.02, produce an impressive linear behavior 
over more than three decades in the familiar log m* versus log(1 - TITs*) 
plot. (~~ The corresponding thermodynamic amplitude following from the 
previous analysis is B = 1.186 + 0.03. We may also mention that the value 
(3.4b) was further confirmed by performing some (relatively) short) 
evolutions of the system with L = 300: these never reached the stationary 
state (actually, they revealed critical slowing down around 1.35Tc), but the 
time evolution of the order parameter was consistent with the dashed lines 
drawn in Fig. 5b. 

One may define a specific heat C as the temperature derivative of the 
energy u(T). The results for several finite lattices as well as for the infinite 
system are shown in Fig. 7; this is obtained from the data in Figs. 3 and 4 
by first making a smooth cubic or spline interpolation such that the 
involved nodes are located, trying preferably to reproduce correctly the 
sign and variations of the second derivative at each temperature. Again, the 
behavior in Fig. 7 is similar to the one shown by the equilibrium model 
with free edges. (~4) On the other hand, a similar study trying to obtain 
"directional specific heats" from ux(T) and uy(T) produces no new 
noticeable results. It seems more interesting to compare the above behavior 
with that of the response functions C'  and X'  obtained, respectively, from 
the mean squared fluctuations of the u and m data. The results are shown 
by Fig. 8, where, apart from some (small) noise, it is revealed that the 

0 I I 

. 7  1 . 0  1 . 3  
T / T o  

Fig. 7. The specific heat, defined as the temperature derivative of the energy u, for different 
sizes. Same symbols as in Fig. 3. ( � 9  The infinite system, from the data in Fig. 4. 
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(a) The specific heat and (b) the ordering susceptibility, obtained assuming a 
fluctuation theorem holds, for different sizes. Same symbols as in Fig. 3. 
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validity of fluctuation theorems seems to break down in the present non- 
equilibrium situation. Actually, the detailed balance condition only holds 
locally in the model, and the external electric field energy cannot be 
included in the Hamiltonian, so that there is no proof of the microscopic 
reversibility leading to the fluctuation-dissipation theorem. (3'4'12'~5) 

4. SCALING A N A L Y S I S  

The strong finite-size effects reported above suggest that a detailed 
scaling analysis of the data with L and T be performed referring specifically 
to the present anisotropic case. We first introduce the hypothesis, first 
assumed and roughly confirmed by Katz (~6) in a MC renormalization 
group computation, that there is a unique correlation length critical 
exponent v in the problem. This assumption turns out to be consistent with 
our data in the sense that we never observed indications to the contrary 
(e.g., when comparing scaling behavior above and below the critical tem- 
peratur), and that introducing independent longitudinal and transverse 
correlation lengths produces no better results than the ones reported below 
(3.g., Fig. 12); see also Section 5 including an independent study of 
correlations. 

Let us define a "critical temperature" for the finite system T~*(L) as the 
one locating the peak of the specific heat in Fig. 7 or the most rapid change 
of the slope in Fig. 3. According to the above hypothesis, (~4"17~ this will be 
assumed to be characterized also by the condition that the relevant 
correlation length satisfies ~[T~*(L)] ~ L and consequently 

1 - T , * ( L ) / T , * ~ a L  1iv (4.1) 

where T* represents the limit of T,*(L) as L ~ oe. The fact that ~ is the 

relevant correlation length may be interpreted in several ways: r is an effec- 
tive parameter describing the competition between longitudinal and trans- 
verse correlation effects, ~ is the longitudinal correlation length so that the 
longitudinal correlations dominate the critical behavior and render rather 
irrelevant the correlations along the direction perpendicular to the field, or 
the longitudinal and transverse correlation lengths are essentially propor- 
tional to each other near T,*. Figure 9 shows the consistency of the data 
with Eq. (4.1) when Tc = 1.355T~ and v =0.55, which is the value reported 
in this paper. The fact that it follows that a > 0  (a = 0.66) in Eq. (4.1) from 
Fig. 9 is also a feature of the equilibrium two-dimensional Ising model with 
free edges, while the corresponding case with periodic boundary conditions 
is characterized by a < 0. (~4) 

Let AL(T)  represent a physical quantity such that as L--, oe it has, 
say, an algebraic singularity A s ( T ) ~ A e  -~ when e--* 0; here ~ is defined in 
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1-1F 
T~ (L)/To I 

b 

0.9 

0.13 

O. O. Ol 0.02 
L-I/~, 

Fig. 9. The values for the "critical temperature" T~*(L) characterizing the peaks in Fig. 7, 
shown to be consistent with Eq. (4.1) when T,* is given by Eq. (3.4b) and v = 0.55. 

the usual way according to whether one considers e-- ,0  + or 0 - .  
Homogeneity of the thermodynamic functions then leads to the usual scal- 
ing behavior (17) 

A L ( T  ) = L~/VX(x) ,  x = eL  1Iv (4.2) 

where it is required that x ~ c o n s t  for small x and X ( x )  ~ A x  -~  at large 
enough values of x, i.e., for e ~ 1 and L ~ oe. One may expect (4.2) to be 
valid in the presence of anisotropic effects, except that the scaling functions 
should then include important "surface contribution, ''(14) as described in 
the preceding sections. The anisotropy in the present case is not associated 
with any geometric parameter, (14) but with an intrinsic property of the 
model and one may simply expect 

X ( x )  ~ A x  ~ + A s x  ~ (4.3) 

at large x. 
The specific anisotropic contributions to the scaling functions may in 

principle be related to the observed general behavior of A L ( T )  with L for 
large L near the critical temperature. For  instance, Eqs. (4.2) and (4.3) read 
in the case of the order parameter 

rn L = L ~/V(Bx~ + Bsx~s), T <  T *  (4.4) 
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and 
mL = B's(X') ~'~, T >  Tr (4.5) 

where the prime indicates that the corresponding quantity is defined above 
T*. The observations, reported in Section 3, that A m - m L - m ~ ' ~ L  -1 
below T* and A m  ~ L n above T* then lead, respectively, to fis = f l -  v and 
fi', = nv. Thus, in order to compute these quantities in practice, one may 
proceed, for instance, as follows. Below T* one has from Eq. (4.4) that 

B _ m L ~ - ~ = _ B , x ~ - ~ = _ B s L  1~ v (4.6) 

so that a plot of l n ( B -  m c e - P )  - l n ( -  B , L - 1 )  versus in e should produce a 
straight line of slope - v ;  the data confirm this, leading to the value 

v = 0.55 { -0.05+0"20 (4.7) 

where we are overestimating the upper error bar following from the 
corresponding least squares fit in order to account also for our errors on 
B, fl, and T,* as given in Section 3 and for the fact that increasing v from 
0.55 produces better scaling results later on than decreasing it. Now, 
according again to Eq. (4.6), a plot of B - - m c e  - ~  versus x will give f l s - f i  
and thus fls; this, which happens to be noisier than the one before, is 
shown by Fig. 10; we obtain f i s = - 0 . 3 2  and B s = - 0 . 7 7 .  The fact that 

I [ I I 

[3 - r l l  LE "~ 
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a n d  B s  in Eq.  (4.6).  H e r e  L = ( z5 )  10, ( O )  50, a n d  ( [ ] )  100. 
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B, < 0 is a characteristic of the present model, which is in contrast with the 
equilibrium case with periodic boundary conditions, and simply reflects 
that A m  ~ a(e)L-1, a < 0. Above T~* the situation is even simpler; it follows 
from Eq. (4.5) that a plot ofmL versus x '  may give the exponent/~'s. This is 
shown by Fig. 11, producing fl's= -0.11, which equals nv with n = -0 .2 ,  
and B" = 0.52. 

The values obtained in this way be used now to test th suggested 
global scaling behavior, Eqs. (4.4) and (4.5). The result is quite convincing; 
this is shown by Fig. 12, where we only include the data for x > 4 below T~* 
and x < 140 above T*. That is, scaling breaks down below T~* for very 
small values of x, where ~ > L and finite-size effects are too strong, while 
we do not observe deviations from scaling in the range 4 < x < 1000; above 
T~*, on the contrary, very large values of x tend to deviate from the 
behavior (4.5) given that finite-size effects are then very small and indepen- 
dent of temperature. Also, scaling tends to fail very near T~*, say for 
x < 1.5, probably because the expected changeover of mL near T~* is not 
well reproduced by the computer simulation data. 

The specific heat and ordering susceptibility obtained as the 
corresponding derivatives of the energy and order parameter may in prin- 
ciple be analyzed following the trend suggested by Eqs. (4.2) and (4.3) 
with some obvious changes. Nevertheless, the procedure to obtain those 

Fig. 11. 
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Logarithmic representation of mL versus x ' =  s 'L uv above T,* to obtain fl'~ and B', in 
Eq. (4.5). Same symbols as in Fig. 10. 
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Fig. 12. The order parameter mL(T) against F(x), defined as the rhs of Eqs. (4.4) and (4.5), 
using the parameters given in the text, to demonstrate the scaling behavior discussed in 
Section 4. Same symbols as in Fig. 10. 
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quantities (Section 3) is rather involved and the resulting indirect data are 
too noisy to allow a definite conclusion as for mL. On the other hand, 
referring to the case of the specific heat, the data obtained in Section 3 as 
an extrapolation for the infinite lattice lack the necessary quality to allow 
the direct evaluation of the corresponding critical exponent c~; this is also 
hampered by the fact that ct = 0 for both the equilibrium Onsager solution 
(logarithmic divergence) and the mean-field theory (discontinuity). It is 
true, however, that Fig. 7 suggests a strong singularity of the specific heat 
at T~* and, in particular, that the data are consistent with this being a 
logarithmic singularity, as shown by Fig. 13; in any case, it should be men- 
tioned that the precision of the data does not allow us to discard some 
small value for cc The ordering susceptibility in Fig. 8b, on the other hand, 
allows no conclusion about 7. 

5. C O R R E L A T I O N S  

As discussed before, of particular interest in the present problem is the 
detailed study of correlation functions along the two principal directions of 
the lattice. Unfortunately, the MC method is not the most suitable for that 
purpose, e.g., finite-size effects below T~* may even influence the qualitative 
nature of the correlation functions, and the underlying theory is less 
developed than for the critical behavior of other quantities, etc.; in any 
case, their study provides some interesting qualitative and semiquantitative 
features of the model. 

The relevant quantities are the longitudinal (along the field direction) 
and transverse (perpendicualr to it) pair correlation functions defined, 
respectively, as the ensemble average of 

L 

gt(r)=N 1~ (2nij-  1)(2ni+rj- 1)-~/z (5.1a) 
i , j  

where r/= 2p - 1 and i represents the index describing the 2 direction, and 

L 

g,(r) = N -1 ~ (2n 0 -- 1)(2nij+r- 1) - qz (5.1b) 
i , j  

with j describing the direction perpendicular to the field. The computations 
refer to the L = 100 lattice and q = 0. 

Figure 14 collects some representative results, whose interpretation is 
rather simple. The longitudinal correlation decreases with r rather quickly 
from the value gt(0)= 1 until a constant value, which decreases with 
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Fig. 14. ( O )  Longitudinal and ( O )  transverse correlation functions as defined by Eqs. (5.1): 
(a) during the stationary state at T=0 .STc<T~*  , (b) at T = l . 3 2 T c < T ~ *  , (r at 
T =  1.45T~ > T*,  and (d) in the case of intermediate states with several strips, as in Fig. le, at 
T=HT~. 
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increasing temperature (Fig. 15), this also being the case for intermediate 
multistrip states. The transverse correlation, on the contrary, usually 
reflects a richer structure associated with the phase segregation in the 
system. The system in Fig. 14a presents a very well-defined strip of par- 
ticles, and gt(r) decreases with r, reaching a zero at L/4 and the minimum 
value at L/2, the width of the strip; this behavior is less pronounced in 
Fig. 15b, where the strip is not so well defined, and g,(r) is practically 
negligible above T,* in Fig. 14c. Figure 14d corresponds to states such as 
the one represented in Fig. le with seven rather well-defined strips, and 
g,(r) clearly reveals that structure. 

As expected, the correlation function is indeed highly anisotropic and, 
at a given temperature, the longitudinal correlation function is always 
higher than the transverse one; this effect is more pronounced as the 
temperature is lowered, but is also noticeable above T,*. 

The latter fact deserves a closer inspection. Actually, Fig. ld reveals 
the presence of a high degree of anisotropic order at T =  1.45T c, above T,* 
( =  1.355Tc). The effect is still very evident well above T~*, as in Fig. 16, 
showing the presence of clusters, which are predominantly oriented in the 
direction of the field at T>~ 2T~*. That is, it seems that the (infinite) field is 
enhancing the longitudinal correlations so much that it is capable of 
causing some important ordering at relatively high temperatures, even 

1.0 

g~(50 ) 

0 . 5  

0 .0  
1. 

\ 

b 
\ 

\ 

xo 
\ 

\ 

~ o  

t 1.5  2 .0  
T /To  

Fig. 15. Value of the longitudinal correlation function gt(r) for r=L/2 (L= 100) as a 
function of temperature. These values are also given in Table I as a 3. The arrow locates T,~'. 
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( b )  

Fig. 16. A compar i son  of several  typical conf igura t ions  showing  the presence of some  
anisot ropic  cluster ing well above  T *  in the presence of the (infinite) field: (a) T=2Tc, 
L = 100, (b) T =  3Tc, L = 100, (c) infinite t empera tu re  with no field, L = 120. See also Fig. ld.  
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(c) 
Fig. 16 (continued) 

much higher than the temperature for the onset of well-segregated strip 
states, where the equilibrium ( E = 0 )  configurations would be practically 
indistinguishable from the infinite-temperature ones; cf. Figs. 16 and ld. 

In order to look more closely at this effect, and try to confirm our 
previous statements about  the correlation length critical exponent, we have 
analyzed numerically the directional kcorrelation lengths above Tff, where 
finite-size effects are negligible in practice. Some of the corresponding data 
for the longitudinal and transverse cases are collected in Figs. 17 and 18 
and in Table I. 

The initial (small-r) strong decay shown vy the transverse correltion 
function (Fig. 17a) can be fitted by using an exponential, 

g t ( r ) ~ e  r / c ,  small r, T >  T* (5.2) 

with ~ = ~(T) decreasing monotonically with increasing T (Table I). The 
longitudinal correlations, on the other hand, decay much more slowly, as 
shown by Fig. 17b. Motivated by the equilibrium theory, we tried several 
expressions to describe the data in Fig. 17b. We only mention the fit 
gt(r) ~ A exp ( - r /~ ) e -b ;  this is rather poor, but it produces the interesting 
result b ( = d -  2 + ~/) = 0. t 1, independent of temperature, which is inter- 
mediate between the Onsager (~t= 1/4) and classical (~t=0) results, as 
occurs with other critical exponents reported in this paper. 
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Fig. 17. Correlation functions for T>T*. Here T=(O)I.3T,., ( ~ ) l . 4 T , . ,  ( x ) l . 5 T , . ,  
(*) 1.7Tc, and (O)4To .  (a) Transverse case as a function of r; the dashed line represents an 
exponential fit as in Eq. (5.2). (b) Longitudinal case as a function of logl0r; the dashed lines 
correspond to the behavior (5.3). 
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Assuming that the data in Fig. 17b cannot be described by a single 
simple behavior, it seems interesting to mention the phenomenological fit 

gl(r) = ale-r / t+ a2[1 + (r/2) 2] 1 + a3 (5.3) 

where at are temperature-dependent parameters satisfying the nor- 
malization condition a l ( T ) + a 2 ( T ) + a 3 ( T ) =  1. This, implying a change 
over of g~(r) with r, adjusts the data for T >  T* very well when on sets 
a3 = gt(r = L/2) and uses l, 2, and al as adjustable parameters (Fig. 17b); it 
is interesting that Eq. (5.3) also describes very well the data below T*. 
Table I lists the values for the parameters in Eq. (5.3). On the other hand, 
Table I reveals that ~ ~ l for T >  T*, so that one also has 

g , ( r ) - g , ( r ) = A [ l + ( r / 2 ) 2 ]  -1, r > l  (5.4) 

which is indeed confirmed independently by the data for T >  T*. These 
facts seem to be consistent with our assumption about a single correlation 
length in the system. 

As shown by Figs. 17b and 15, and by the values for a3 = gt(r = L/2) 
in Table I, gt(r) has a nonzero value at large r even for some temperatures 
above T,* (e.g., at T >  1.5To), revealing the existence of some long-range 
order, probably due to some finite-size effect. This is consistent with the 
existence of anisotropic clustering, i.e., clusters of ions having a 
longitudinal size larger than the transverse one, which can be observed very 

Fig. 18. 
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clearly at 2To and even at highr temperature; cf. Figs. ld, 16a, and 16b. 
This is also revealed by Fig. 18, representing the tail of g(r) with great 
detail at T=4Tc: gt(r) and gt(r) show indeed a different behavior at such 
high temperatures. 

6. C O N C L U S I O N  

The model considered in this paper allows the study of nonequilibrium 
second-order phase transitions and stationary states. Concerning the latter, 
the apparent breakdown of dissipation-fluctuation theorems is revealed. 
Concerning the former, we have performed a detailed finite-size scaling 
analysis, which confirms our previous (6) arguments favoring a novel critical 
behavior for the infinite system, which differs from both the equilibrium 
and the classical ones, in the case of two dimensions. The scaling behavior 
found also has an intrinsic interest: it essentially deviates from the one for 
the equilibrium Ising model (no electric field) with periodic boundary con- 
ditions, the kind of boundary conditions considered for the model here, 
when one makes the assumption that, in spite of the great anisotropy of 
our model, there is only a relevant correlation length in the problem. This 
is motivated and it also seems confirmed by an independent study of 
correlation functions. It should bementioned that our observation of an 
effective correlation length may perhaps raise some doubts about (though 
it does not necessarily exclude) the recent assumption (11-13) of well-defined 
longitudinal and transverse correlation lengths which behave differently as 
one approaches the critical temperature. The computer simulations and, in 
particular, our study of correlation functions indicate as well the presence 
of some order (anisotropic clustering) above the nonequilibrium critical 
temperature, a fact that deserves more thought. Actually, the most general 
conclusion concerning correlations in the present model is that there 
remain a number of questions to be answered; much more work will be 
needed for that purpose; e.g., it turns out that it may be useful to perform 
further computations referring to square, rectangular, and three- 
dimensional lattices. We are carrying out a finite-size scaling analysis of the 
three-dimensional versions of the model. 

The critical behavior of the present model seems to deviate from that 
in related models ~2'3'8 13); this is a manifestation of the fact that the non- 
equilibrium critical behavior is much more complex and varied than the 
equilibrium counterpart. While this should be expected given the singular 
simplicity of the equilibrium state, it might be considered a surprise at a 
time when the Landau theory is recognized as bearing great relevance in 
the description of nonequilibrium phase transitions. This "surprise" should 
motivate related experimental work. 
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NOTE A D D E D  IN PROOF 

D u e  to a n  i n a d v e r t e n t  error ,  the va lues  of the t r ansve r sa l  co r re l a t ions  

in  Figs.  14, 17a, a n d  18 need  to be mu l t i p l i ed  by  a factor  of  25/7, a n d  the  

va lues  of ~ in  T a b l e  I need  to be modi f i ed  accord ing ly .  
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